Search results for "decentralized decision making"
showing 1 items of 1 documents
Accelerated Bayesian learning for decentralized two-armed bandit based decision making with applications to the Goore Game
2012
Published version of an article in the journal: Applied Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/s10489-012-0346-z The two-armed bandit problem is a classical optimization problem where a decision maker sequentially pulls one of two arms attached to a gambling machine, with each pull resulting in a random reward. The reward distributions are unknown, and thus, one must balance between exploiting existing knowledge about the arms, and obtaining new information. Bandit problems are particularly fascinating because a large class of real world problems, including routing, Quality of Service (QoS) control, game playing, and resource allocation, can be solved …